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Generalized charge carrier equations for hopping transport in semiconductors 
are derived which include also the widely used Van Roosbroeck equations. The 
approach is based on a microscopic stochastic interacting particle system which 
models the hopping of electrons on a random set of states. 
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1. I N T R O D U C T I O N  

The use of semiconducting materials such as silicon, amorphous silicon, or 
selenium plays an increasing role in microelectronics and other fields. A 
theoretical understanding of the charge transport dynamics in such 
materials provides a basis for any effective way to design electronic device 
materials and structures. 

Van Roosbroeck (13) developed phenomenological charge transport 
equations for a homogeneous nondegenerate semiconductor. These equa- 
tions are widely used to model semiconductor devices. (1) 

For high-resistivity semiconductors (2~ and degenerate semiconducting 
materials the Van Roosbroeck transport equations fail in many situations. 
In particular, for the case of hopping transport there is no general theoreti- 
cal approach. (9,12) 

Starting from a microscopic stochastic hopping model with particle 
interaction, we derive in this paper charge transport equations which work 
in several previously unsatisfactorily modeled situations. Theses equations 
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include also Van Roosbroeck's equations as a special case which followed 
originally from a band model. Therefore, the present paper may be con- 
sidered also as an attempt to unify hopping and band transport 
phenomenona. 

The general plan of the paper is the following: First we describe the 
semiconductor equations. Then we introduce a microscopic interacting par- 
ticle system which models the motion of electrons. From a law of large 
numbers we get a macroscopic equation for the evolution of.the density of 
the electrons. Finally, we derive the equations for the charge transport in 
semiconductors. 

For i , k ~  {0, 1,...} we denote by Ci(G) the set of all /-times con- 
tinuously differentiable functions on a domain G_cR d. The set 
Ci'i([0, to], G) is the set of all functions on [0, to] x G, to e (0, oc), which 
are /-times continuously differentiable with respect to the first coordinate 
and j-times continuously differentiable with respect to the other coor- 
dinates. G is the closure of G. We let W c  R 3 be a bounded 3-dimensional 
open connected domain with smooth boundary, which will represent the 
spatial extension of the semiconductor. 

2. THE EQUATIONS FOR THE FLOW OF 
ELECTRONS A N D  HOLES 

In a semiconductor there are charge carriers of two types: electrons in 
the conduction band 

Ec = [e_c, ~c] 

and positive holes in the filled valence band 

Ev = [_co, ~v] 

These two bands are separated by a gap (6v, _ec) of length 

A E  - :  e_ c - 6~ 

The equations for the flow in three dimensions of electrons and holes in a 
semiconductor contain, as principal dependent variables, the hole and 
electron concentrations p and n, the flow densities Jp and J , ,  and the 
electrostatic potential K For simplicity in this paper we consider V as a 
given function from C1'2([0, oe), if/). It will usually be characterized by the 
Poisson equation, such as in Van Roosbroeck's equations. 
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The charge carrier transport equations have the form 

in R+ x W. Here 

and 

@ 
- - =  - r - d i v  Jp (2.1) & 

~n 
- -  = - r - div Jn (2.2) 
0t 

Jp = - ~ p  grad(eV+ ]G) (2.3) 

Jn = an grad@V+ #,) (2.4) 

are the hole and electron flow densities, which depend on the conductlvities 
ap and an and the chemical potent ials /~ and I~ in the valence and conduc- 
tion bands. Here r denotes the net recombination rate and will be specified 
in (2.12). In this paper we restrict ourselves to the case of a drain- and 
source-free region without contacts, and thus obtain the boundary condi- 
tion 

v.G=v.&=o (2.5) 

on R+ x 0W, where v denotes the outward unit normal to the boundary 
0W. We remark that the proposed approach yields corresponding asser- 
tions for situations with drains, sources, and contacts. 

Since we are describing a nonequilibrium dynamics, we also need 
initial electron and hole concentrations no and P0. 

So far the above equations look similar to the Van Roosbroeck equa- 
tions, but our equations differ from them essentially in the structure of the 
conductivities o-p and an and in the net recombination rate r and the 
chemical potentials #~ and/to. All these variables are related to the occupa- 
tion rates in the valence and conduction bands, Rv and Re. In particular, 
we have the occupation rates of the states { [1 ]}1 

R~= l + e x p  - ~ ( / G - - E )  (2.6) 

for E e/7~ in the valence band and 

1 

for E ~ P c  in the conduction band on R+ x if'. Here k is the Boltzmann 
constant and T the absolute temperature. Obviously, in both bands we 
have Fermi-Dirac statistics characterized by the corresponding chemical 
potentials. We remark that Van Roosbroeck's equations are based on the 
Boltzmann approximation. 

822/59/5-6-16 
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Using the occupation rates R~ and R c and the density of states 2, we 
can write the concentration of holes as 

p= f~ (1-Ro),~dF, (2.8) 
v 

and the concentration of electrons as 

n = I~ R~2 dE (2.9) 
c 

An important result from our approach is the nonlinear logistic structure 
of the conductivities ap and a~. These have the following form: 

ap=~ f& ~ R~(1- R~) ).2 dE (2.10) 

and 
f" 1 

an---~ J E c ~  R~(1-  Rc)~2 dE (2.11 ) 

where ~ is a material parameter which will be specified in (4.30). We 
remark that the conductivities are bounded and vanish for zero or full 
occupation, R = 0 or R = 1. The above conductivities also give a good 
natural model for the degenerate case when the chemical potentials are 
located within the bands. For nearly constant density of states in the non- 
degenerate case the following form follows from (2.10) and (2.8) for the 
conductivity ap: 

p-~-~2fE(1-Rv)2dE=ff-~2P 

which is the Van Roosbroeck conductivity of the valence band. An 
analogous result holds for the conductivity of the conduction band. 

Here we specify the net recombination rate r in the form 

r = C~ { Rc(G)[1- Rv(~) ] exp ( A~T) 

AE 

{ < 1 {  
=Cr l + e x p  ~-~(#~ l + e x p  ~--~(/~c-_G) 

x{exp[~(#~-~AE)]--exp[~(l~-~AE)]} (2.12) 
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We note that for equal chemical potentials #~ = #c a vanishing net recom- 
bination rate r = 0 follows. The above nonlinear structure of r then drives 
the whole system from any initial electron and hole concentration into an 
equilibrium with equal chemical potentials #v = #o. 

Finally, we remark that the proposed approach can also be applied to 
other electronic materials and yields quite interesting natural charge 
transport equations. 

3. THE M I C R O S C O P I C  S T O C H A S T I C  M O D E L  

We suppose that microscopic objects exist (e.g., localized states, 
atoms) which we call states. At these states the electrons may stay and they 
are allowed to jump from state to state. We suppose that the duration of 
a jump itself is small in comparison with the mean waiting time until the 
next jump of the electron. 

Our microscopic stochastic model is based on an interacting particle 
system which is called an exclusion process in ref. 5. These particles repre- 
sent electrons which are jumping according to a Markov kernel on a given 
set of states. However, any jump which would take an electron to an 
already occupied state is excluded. 

Many properties of the semiconducting material are modeled by a 
random counting measure N, representing the states. The external and 
internal influences on the microscopic stochastic motion of electrons are 
modeled via the jump intensities of the Markov kernel. 

To introduce the microscopic stochastic model, we use the results in 
ref. 10 and refer for notation and definitions to refs. 3 and 4. 

To be mathematically precise, let (f2, F, P) denote the basic proba- 
bility space, which is complete, and let F = ( F , ) ,  t>~0, be an increasing 
right-continuous family of complete sub-a-fields of F. Let E represent the 
expectation with respect to the probability measure P and B(G) the Borel 
a-field of a topological space G. 

For Ke(0 ,  oo) we denote by LCx  the set of bounded Lipschitz- 
continuous functions 

f I R 4  ~ [ - K , K ]  

with 

If(u) - f (q) l  <~ KI q -  u[ (3.1) 

for all u, q ~ R 4, using the usual Euclidean norm. 
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3.1. The Set of States 

Recall from Section 1 that W c R  3 denotes an open connected 
bounded domain with smooth boundary, which represents the spatial 
extension of the semiconductor. 

Let us denote the open energy intervals of the valence and conduction 
bands by 

Ev = (_e~, 6,) and E c = (e_~, 6c) 

Now, we introduce the set 

Q =  W x ( E v W E c ) ~ R  4 (3.2) 

and interpret its closure Q as the state domain, where a state q =  
(ql, q2, q3, q4) ~ O. is characterized by the three spatial coordinates 

0 = (ql, q2, q3) e I~ 

and its energy coordinate 

q4 E E v ~ E C 

We model the motion of electrons as jumps from states to other states. The 
set of states may have an ordered or disordered structure. 

We introduce a family (Nn)~>l of Fo-measurable counting measures 
on B(Q) which we call counting measures of states. For  fixed n > 1 we 
assume that two states do not have the same location in Q. This means N,  
must be a simple point process. Obviously, for each set A E B(Q) the 
random variable N , ( A )  counts the number of states in A. Because Nn is 
assumed to be Fo-measurable, the realization of N~ remains fixed from the 
beginning. 

We interpret the parameter n, for which 

as the mean number of states per unit volume in R 4. Since n is extremely 
large for semiconductors, we will later investigate the limiting behavior for 
n ---~ 00. 

Let the given density of states 2 be a twice continuously differentiable 
function on Q which is strictly positive in I~x (Ev w Ec). We assume at the 
band edges 6~ and e~. that 2 together with its first derivative in the energy 
direction vanishes, but the second derivative in the energy direction is 
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strictly positive. We remark that by a slight modification of our approach 
one can also handle other shapes of the band edges. 

Now, for each Ke(0,  oo) we suppose that the following condition 
holds for the random medium N,: 

lira E sup f(q) 1 N , (dq) -  f(q) 2(q) dq = 0 (3.4) 
n ~ oo f ~  L C K  H 

That is, the difference of the two functionals converges as n --, oo in the 
mean square sense to zero uniformly in the test functions in LCk. Further- 
more, we assume that the fourth moment of the normalized number of 
states in Q is bounded by a constant K~ < oo: 

sup E Nn = K 1 (3.5) 
n > l  

There exists a wide class of stochastic point processes Nn which satisfy the 
above conditions. For instance, this is shown in ref. 10 for the Poisson 
point process and holds also for many deterministic grids. It seems that 
most important semiconducting materials of practical interest can be 
modeled by the above counting measures Nn. 

3.2. The  M a r k o v i a n  J u m p  M e c h a n i s m  

To model the Markovian jump mechanism, we introduce for each 
n > 1 an F-adapted cadlag (right continuous with left-hand limits) Poisson 
jump measure #n on B([0, oo)) |174 which generates the 
possible jumps of the electrons on the set of states. We emphasize that 
these possible jumps do not depend on the actual configuration of the 
electrons. Later, within the dynamics of our model only those jumps from 
occupied into vacant states will be allowed, with the others excluded. 

We can thus say that the process 

{#n([0, t], A, B)},~> o 

is the Poisson process which counts the possible jumps from A into B for 
any pair of subsets A, B e B(Q). 

The Poisson jump measure/~ is characterized by its intensity measure, 
which is also defined on B([0, oo))| B(Q)| B(~)) and has the form 

v,(dt, du, dq) = n lw,(u, q) N,(du) N~(dq) dt (3.6) 

where the jump rate w,(u, q) will be specified below in (3.7). 



1336 Platen 

If the jump rate w, does not depend on the time t, then in our model 
an electron at a state at u waits an exponential time with parameter 

f p(u) = wt(u, q) - N,,(dq) 
0\{-} n 

At the end of this time it chooses a state q with probability 

n - lwt(u ,  q)/p(u)  

if q is vacant, then it jumps to q, whereas if q is occupied, then it stays at 
u. Therefore, we will have at most one particle at each site at any given 
time instant. We incorperate the assumptions about the microscopic 
behavior of the electrons within the given semiconducting material into the 
specification of the jump rate wf. Similarly to the hopping probabilities 
suggested by Miller and Abrahams (6~ and Mott, (1'8) we propose for t >/0 
and u, q e Q the following jump rate: 

w t ( u , q ) = T e x p {  2 1 ~ _ f i l _  
e 

- ~ 2 ~  Iv(t, ~?)- v(t, ~)] 

1 } 
- ~  ]q4 - u41-  2 ~  (q4 - b/4) (3.7) 

with the notation u = (ut, u2, u3, u4), fi = (ul, u2, u3) also for q and ~. 
Here/3 is the energetic scattering width, which in our case is assumed 

to be much smaller than the gap width AE. 
Therefore, we set 

/~ = y 4 E  ( 3 . 8 )  

where y ~ 1 is a small parameter. Later we let y tend to zero. 
Analogously, ~ denotes the spatial scattering width. To obtain in the 

later asymptotics for y--*0 a limiting charge transport dynamics 
simultaneously between and within the bands, we have to set 

o: = Sy 5/2 e x p ( _ y - t )  (3.9) 

where S is a macroscopic reference length which we call the relative spatial 
scattering width. To scale the dynamics in a proper way, we also have to 
choose the preexponential factor 7 in (3.7) in the form 

Y = ~7Y-27/3 exp(5y-  1) (3.10) 

where ~ plays the role of a time scaling parameter and is a material 
constant like A E  and S. 
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Let us remark that one can approximately write 

V(t, ~) - V(t, ~) ~ grad V(t, ~). (~ - ~) 

for sufficiently small 0 -  ft. 
We have to assume that in reality the parameter y is small enough 

(y < ~ 1) for the given material so that the jump rate wt decreases in all 
directions. This means that the relations 

and 

2 1 
> (3.11.) p 2kr 

2 e 
- >  sup Igrad V(t, 0)l (3.12) 
O~ 2 ~  t~>O,~ W 

should be satisfied. 
We note from (3.7) that jumps into lower energy levels have a higher 

jump rate than those into higher ones. Further, we have the highest spatial 
jump rate in the opposite direction of the gradient of the electrostatic 
potential V, which is that of the electrical field. 

The assumptions (3.11) and (3.12) exclude the cases of extremely low 
temperatures T or very strong electrical fields, which we do not consider 
here. 

The jump rate (3.7) applies to an isotropic material, but the approach 
can be generalized also to the anisotropic case. 

3.3. The Initial Condition 

We denote by Ln, t the counting measure of electrons at time t ~> 0 and 
assume that L,,o is Fo-measurable. 

The function ~0 [ Q ~ [0, 1 ] will be called the initial occupation rate of 
the,, states. We assume at time t = 0 that at most one electron occupies each 
state and for all K~ (0, oe) the following condition holds: 

l ime sup f ( q ) l L n o ( d q ) -  f(q)qo(q)2(q)dq = 0  (3.13) 
' ~ f e  L C K  [- Q n ' 

The above condition supposes that the normalized initial counting measure 
of electrons (1/n)L~,o(dq) converges in the above mean square sense 
to the measure cp(q)2(q)dq. Obviously, a wide class of initial electron 
configurations satisfy this condition. For instance, it holds if the states are 
independently occupied with probability ~o at the beginning. 
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For a simpler presentation of the results we assume that rp e C3(0), 
that there is no electron or hole current through the boundary 0W at the 
beginning, and that q) follows Fermi-Dirac statistics [see (2.8), (2.9)] in 
both bands. 

3.4. The Stochast ic  Equation 

Let 6u denote the Dirac measure at u e 0 and Ln, t- the left-hand limit 
of the electron counting measure L.,t at time t > 0. 

Now, for n > 1 we define the measure-valued process 

L.= {L.,t},~o 

as the unique solution of the following stochastic equation: 

L,,,t=L,,,o+ f~ fQfO(6f-c~u) L,,,s ({u}) 

• [1 -Ln, s ( (q}) ]  #n(ds, du, dq) (3.14) 

t >~ 0, which describes the evolution of the electron counting measure Ln,, 
driven by the Poisson jump measure #, .  

It can be seen that the Dirac measure changes its position from u to 
q at time t if such a possible jump is generated at t by #n where just before 
t the state at u is occupied and that at q is vacant. Thus, we have only 
jumps from occupied into vacant states. The exclusion of jumps into 
occupied states creates the interaction of our microscopic stochastic par- 
ticle system. 

3.5. The Occupat ion Rate 

Now, we introduce the occupation rate H(t, q), which we may later 
interpret as the asymptotic probability (n --* oe ) that a state at q E 0 will be 
occupied at time t >/0. 

We define H as the unique solution of the following integrodifferential 
equation: 

-~g(t,q)=[1-H(t,q)] wt(u,q) H(t,u)2(u)du 

-g(t,q) Iowt(q,u)[1--H(t,u)])~(u)du (3.15) 
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for all t > 0 and q e O with initial condition 

H(0, q) = q)(q) (3.16) 

for all q e Q. 
It is shown in ref. 10 that we have 

H(t, q)~ [0, 1] (3.17) 

for all t~>0 and q~Q.  
Equation (3.15) describes the evolution of the occupation rate H. It 

shows how H(t, q) changes in relation to the values of H in O and the 
jump rate w~ at time t. In some sense it can be interpreted as a kind of 
Boltzmann equation. 

3.6. The Law of Large Numbers 

'The mean number n of states per unit volume is extremely large for 
most semiconducting materials and structures. Therefore, we study a 
suitable limit of the normalized counting measure of electrons n-~Ln, t for 
the case n ~ oe. We will formulate in the following a law of large numbers 
which shows that the random measure n-~Ln,,(dq) converges in a suitable 
sense to the deterministic measure H(t, q) 2(q) dq. 

In our case the jump rate w, does not depend on n. Under the above 
assumptions the law of large numbers 

lim E sup E( sup Ifo_f(q) l-L~,~(dq) 
n ~ o o  f ~ C L  K \0~<t~<t0 r/ 

-fef(q)H(t,q))o(q)dq] 2 F 0 ) = 0  (3.18) 

holds for fixed to and K e  (0, or). 
The choice of the class of test functions LCK and the inner conditional 

expectation is crucial for the proof of this result, which uses semimartingale 
me.thods. The proof is omitted here because it is almost the same as in 
ref. 10. 

We remark that the conditional expectation in (3.18) relates to the 
driving Poisson jump measure #,  and the remaining expectation 
corresponds to the Fo-measurable random medium N,  and the initial 
configuration of electrons L,,o. 

4. THE M A C R O S C O P I C  N O N E Q U I L I B R I U M  D Y N A M I C S  

Equation (3.15) describes the evolution of the occupation rate H 
driven by the jump rate w t given in (3.7). The jump rate has a local charac- 
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ter, that is, for smaller and smaller values of the parameter y [see (3.8)] 
the jumps of electrons become smaller and smaller. Therefore it makes 
sense to look for a suitable limit of the occupation rate H for y ~ 0 to 
obtain instead of the integrodifferential equation (3.15) partial differential 
equations which describe the asymptotic occupation rate. Now, it is our 
aim to derive the structure of these partial differential equationsl which will 
turn out to be that of the continuity equations described in Section 2. 

Because the jump rate wt defined in (3.7) depends on the parameter 
y �9 (0, 1), we can write 

H(t, q)=Hy(t, q) (4.1) 

for all t �9 [0, to] and q e Q. 
In the following we derive the asymptotic occupation rate R as the 

limit of the occupation rate Hy for y ~ 0. We choose strong smoothness 
and convergence assumptions to obtain the characterization of R in a 
straightforward way. These assumptions seem to hold under quite natural 
conditions, which we do not try to specify in this paper, but this represents 
an interesting problem. 

We assume for all y �9 (0, 1 ) that 

Hy �9 C1'3(E0, t], C ?) (4.2) 

where the third derivative should be uniformly bounded with respect to 
y �9 (0, ~). 

Further, we suppose that 

R �9 C1'2([0, to], Q) (4.3) 

and that Hy together with its time derivative (~?Hfi?t) and the other first- 
and second-order derivatives 

9 2 
Qq--~ Hy, Oq, Oqk Hy, i, k �9 { 1 ..... 4} (4.4) 

converges pointwise for all t �9 [0, to] and q �9 Q to R. 

4.1. F e r m i - D i r a c  S ta t is t i cs  

For all t e [0, to] and ~ e W we introduce the concentration of elec- 
trons Pv in the valence band by 

p~(t, ~) = f~ R(t, q) 2(q) dq4 (4.5) 
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and the concentration of electrons Pc, in the conduction band by 

pc(t, ?1) = fEc R(t, q) 2(q) dq4 (4.6) 

According to (2.8) and (2.9), we obtain 

p(t, q) = !~ 2(q) dq4 - p~(t, ~t) (4.7) 
~ E  

for the hole concentration and 

n(t, 0) = pc(t, 0) (4.8) 

for the electron concentration. 
For all t e l 0 ,  to] and ~e  ffz we introduce the chemical potential 

kt~(t, c7) of the valence band as the unique solution of the implicit equation 

Eo 1 + exp - [#,(t,  q ) -  q4] 2(q) dq4 = pv(t, q) (4.9) 

and analogously the chemical potential #c(t, q) of the conduction band as 
the unique solution of the equation 

fEc(l+exp{--~[#c(t,O)--q4]})-l)~(q)dq4=pc(t, fl) (4.10) 

Now, we can formulate the following assertion, which shows that the 
asymptotic occupation rate R follows in the energy direction within each 
band a Fermi-Dirac statistics [see (2.8) and (2.9)]. 

Propos i t ion  4.1. Under the above assumptions, for each t~>0 it 
follows that 

R(t ,q)=R~(t ,q)=(l+exp{--~El~(t ,  gl)-q4]}) -1 (4.1l) 

for all q =  (q~, q2, q3, q4)s WxEv, and 

1 t, - q 4 ] } )  -1 (4.12) R(t,q)=R~(t,q)=(l +exp{--k-~[ll~( q) 

for all q ~ Wx E~. 

ProoL 1. For shorter notation in the sequel, for t~>O, q =  
(ql, q2, q3, q4) ~ Ra, and u = (u~, u2, u3, u4) ~ R 4, we write 
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and 

0 = (ql, q2, q3), U = (b/l, /'/2, U3) {e  } 
d~,~ = exp - 2 ~  [ V(t, ~l)-  V(t, fi)] 

gu, q = e x p [ - - ~ ( q 4 - - u 4 )  1 

e l = e x p  - - t c ? - ~ l  

2 

Hq = Hy(t, q) 

4 = (ql, q2, q3, H4) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

r 1 = ~S 5 AE (4.20) 

2. Now, using the special form of the jump rate w, given in (3.7) and 
the definitions of ~ and fl in (3.8) and (3.9), we obtain from Eq. (3.15), in 
terms of the above notations, for all y ~ (0, ~), t > 0, and q ~ O the relation 

___0 H ~/-/y(t, q) ~t q 

=n~ 5/~ -1 fo [-(1 - H q )  Hud~,~gu, q 

- Hq(1 -- H, )  d~,~ gq,,] el ez2(U) du 

5fl-1 fO [-(1 - Hq)[-Ho + ( H u -  H0) ] da, og~,q 

- H q [ - 1  - -  HO - -  ( H .  - -  H o )  ] 

• [d~,o + (do,~ - d~,o)] gq,.] 2(u) ele 2 du 

rlO~ 5fl-1 fg_. ( [1-- Hq) Ho gu'q- Hq(1- H4) gq, u] 

+ (H~ - Ho) { [(1 - Hq) gu.q + H a gq,=] d~, o 

+ Hq gq,,,(do,~- d~,o)} 

- Hq(1 - Ho)(do, a - d~,o) gq,.~ 2(u) ele2 du / 
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:~OC 5~ l I~ _ ( { ( l IH~ )Hq(gu ,  q_gq, u) 

~- (no - Hq)[ (1 - Hq) gu, q -~- nq gq, u~ } d~,y 7 

+ ( H . -  Ho){ [(1 - Hq) gu, q + Hq gq,.] d~,o 

+ Hqgq,,(d#.a-dc,.~)} 

-- Hq(1 - Ho)(  do, ~ - d~,o) g q , . )  {2(q) + [2(u) - 2(q)] } e, e2 du 

(4.21) 

3. It can be 
r e  {1,2, 3,4} that 

4 

lim fO ~ 
y ~ O  i = 1  

shown for all q EQ and /re{0,  1,2,...} with 

(u i -  qi) z' ~ -3ei fie2 du 

f ~/2 for 11 = 12 = ]3 = 0, /'4 = 2 

= ~0 for /'1=12=13=0, 14~{1,3,4,...} 

(0 for (ll, 12,/,3) • (0, 0, 0) 

(4.22) 

Further, because of (3.8) and (3.9) we have 

lim ~2f l  2 = O 
y ~ O  

(4.23) 

From truncated Taylor expansions with (4.23), (4~ and (4.22) for 
all t > 0  and q e Q  it follows from (4.22) that 

0 = lira o:2fl 2,t(q) ~ Hq 
y~O 

1 
Jt 

-- ~ ~  (1 -- 2Hq)(q 4 

V e ~ ~ ] 
x k 1 +~-s ,=, ~ V(t, O)(ui-qi) 
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+ i~=1 -~iqiHo(u,-qi) {[(1 -Hq)g,,q+Hqgq,,] da, 0 

+ Hq gq, u(do,~ - da, o)} 
e 3 O ~)(qi-ui)] gq,,) 

x 2(q)+  -s ele2du 
i ~ l  

; (  1~? 
= t/J.(q) [ 1 - R ( t ,  q)] R(t, q)-~-~q42(q) 

1 ~.(q)} 
+ 8@4R(t, q) {8-~4 2(q) + - ~  [1- 2R(t, q) ] 

1 62 ) 
+ ~ ~qZ4 R(t, q) 2(q) 

i f (q)  -~q4R(t,q)+~-TR(t,q)[1-R(t,q)] (4.24) 

4. In view of the smoothness properties of R in (4.3) there exists a 
function cv on (0, to] x W such that for all (t, q) e (0, to] x (Wx  [_e~, 0v]) 
we have from (4.25) the assertion 

cv(t,~)=)v2(q){o~4R(t,q)+~R(t,q)[1-R(t,q)]} (4.25) 

This equation can only be valid with c~(t, 0 ) =  0 because )~ becomes smaller 
than any ~ > 0  within the neighborhood of the band edge ~ and the 
expression 

1 
~q---~4 R(t, q) + -~--~ R(t, q)[1 - R(t, q)] 

is uniformly bounded. 
Therefore, for each t~ (0, to] and qs WxE~, R should be a solution 

of the differential equation 

1 
0 =--~-3 R(t, q)+-s q)[-1 -R(t, q)] (4.26) 

Oq4 

For a given concentration of electrons in the valence band 

p,(t, ~)= f~, R(t, q) ,~(q) dq~ 
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[see (4.5)] it follows that the differential equation (4.26) has the unique 
solution ( )1 

R(t, q) = 1 + exp -- ~-~ [#~(t, g/)-  q4] } (4.27) 

where the chemical potential of the valence band #~(t, ~) is defined as the 
implicit solution of Eq. (4.9). 

In the same way we can also prove the corresponding result for the 
conductivity band. | 

4.2. The Cont inu i ty  Equations 

In the following we investigate within the valence band the evolution 
of the concentration of electrons. It turns out to be characterized by a 
similar continuity equation as we will obtain for the conduction band. 

We will now derive the continuity equations which describe the evolu- 
tion of the concentration of electrons in the valence and electron bands. 
We recall that we also have then automatically from (4.7) and (4.8) the 
evolution of the densities of holes and electrons. 

We introduce for each t > 0 and 31 e fie quantities which we will later 
interpret as the electron current density vector in the valence band, 

j~(t, 31)= - a p (  t, 31)grad[#~(t, ~)+  eV(t, ~)] (4.28) 

and the electron current density vector in the conduction band, 

j-~(t, 3t) = -an( t ,  31) grad[#c(t, ~) + eV(t, c7)] (4.29) 

where the condiuctivities ap and ~r n are defined as in (2.10) and (2.11), 
respectively, and the material parameter O has the form 

t) = f S  5 AE  ~ (4.30) 
2 

Further, for the parameter Cr = Cr(q) in the net recombination rate r(t, 31) 
in (2.12) let us choose for all 31e i f ' the  form 

a2 c~2 
Cr(~) ~-- ~) ~-~ 5 3 AE6 aaq ---s 2(qc) 3q~ 2(q~) (4.31) 

where qc = (ql, q2, q3, _ec.) and q~ = (ql, q2, q3, 8~)- 
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Proposi t ion  
t > 0 and ~ ~ W the equations 

and 

4.2. Under the above assumptions, we have for each 

~pv(t, q) = -divj~(t ,  q) + r(t, O) 

~ pfit, c'/)= -divjc( t ,  c~)- r(t, O) 

(4.32) 

(4.33) 

with reflecting boundary conditions for 0 ~ 8 W: 

j~(t, 7:l).V 0=0 

and 
j~(t, 7:1).v o=0 

and initial conditions for 0 ~ 

(4.34) 

(4.35) 

po(0, g/) = JE~ q0(q) 2(q) dq4 (4.36) 

pc(0, g/)=fE c ~0(q) 2(q) dq4 (4.37) 

Recall that for ~ e 8 W the vector v o denotes the outward unit normal to the 
boundary 8W at the point 0, and q~ is the initial occupation rate. 

From the comparison of Eqs. (4.32) and (4.33) with the well-known 
structure of a continuity equation we interpret the quantities Jv and Jc as 
electron current density vectors in the corresponding bands. 

Further, we have from (2.3), (2.4), (4.28), and (4.29) the relations 

Jp = -Jr (4.38) 

Jn =Jc (4.39) 

on (0, to] x fie, and can easily verify from the above proposition and (4.7) 
and (4.8), Eqs. (2.1)-(2.5) in Section 2 for the flow of electrons and holes. 

Proof. 1. From (4.5), (4.4), and (3.15) we obtain for t e (0, to] and 
~ e W  

8t p~(t, 0)=  lim [ 8 y ~ o ~ ~ I-Iqr aq4 

= lim {Gy(t, q) + Py(t, q)} (4.40) 
y--*O 
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with 

= , [ ( 1  - Hq) H~da, o g.,q 

-Hq(1-H~)do ,~gq ,~]e le22(u) ) . (q )dudq4  (4.41) 

and 

Py(t, 77)=r/a , fl-1 ~Jw• [(l _ Hq) H j ~ , q g . ,  q 

-Hq(1 -H . )dq ,~gq , . - ] e i e22 (u ) )4q )dudq4  (4.42) 

2. It can be shown for all q e W x E ~  and /re{0,1,. . .} with 
r e  {1, 2, 3, 4} that for [ 1 + I 2 + [ 3 ~  1 

4 

lira f I-I (u i -q i ) t '~ -Se l f l  le2dudq4 
y ~ O  ffZxEc i = 1  

= J'~ for ( l , , 12 ,13 ,14 )~{ (2 ,0 ,0 ,0 ) , ( 0 ,2 ,0 ,0 ) , ( 0 ,0 ,2 ,0 ) }  
(4.43) (o otherwise 

We note that we have for all t > 0 and 77 E ffz 

( "  ( ,  

JE JE [(1 - Hq) H o g.,q - Hq(1 - Ho) gq, u] 2(q) 2(q) e2 du4 d q 4  
v v 

= 0 (4.44) 

Thus, using the method in (4.21) and applying (4.44) and (4.43), it follows 
from (4.41) for all t > 0 and 77 e W that 

lim Gy(t, 77) 
y - , O  

: , lim c~- ' f l - '  [ f y  -~ o w D(l'77) eld"g'd~l' 

+ ((H a -- Ho) { [(1 - -  Hq) gu, q + mq gq,.] d~, o + Hqgq, u(do, ~ - d,~,#) } 

-- Hq(1 -- Ho)(do. ~ - d~,o) gq,.) 2(q) 2(u) el e2 du4 dq4 d~ 

822/59/5-6-17 
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= t/ lim ~-s B-1 f Ho(ui- qi) + ~ ~ Ho(ui- qi) 2 
y~O ~ v v i=l 

{[ e 1 x 1 + ~ ~ V(t, (1)(u~- q~) 
i = 1  

e ~ 63 } 
- Hq ~-~ ~ V(t, q)(ui- q~) 

i~l 

+ Hq(1 - Ho) ~ ~ V(t, ~)(u~- qi) 
i = 1  

1632 1) + ~ ~ V(t, (1)(u,- q~)2 2(q) 

i = 1  

Now, we obtain from (4.45) with (4.43) and (4.2)-(4.3) 

limGy(I'(1)~I~fE ~ ( ~ ( ~@i y ~ O  v i = l  -~q R(t,q) 2(q) 2(q) 

e 63 V(t, ~)[1-2R(t ,  q)] 2(q)2 t 
+ 2k----T 63q----~ 

1 ~72 e 
+ ~ Oq-- 7 R(t, q) ,~(q)2 + R(t, q)[1 - R(t, q)] ~-~ 

x ~ V(t, q) -~q. 2(q) 2(q) + ~ ~ V(t, (t) 2(q) 2 dq4 

vi=l 
e } 

+ ~--~R(t, q)[-1 -R(t ,  q)] ~ V(t, 7:1) dq4 (4.46) 

We note from (4.11) for is  {1, 2, 3}, t~>0, and qs ffZx/~ v that 

O-~- R(t' R(t' q)[1-  R(t' q) ] -~qi #V(t' gl) 

Therefore, from (4.46), (2.10), and (4.28) for t > 0 and ~s W we get 
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lim Gy( t ,  77) = r 1 - -  
y ~ o 2 k T  

, 8q---] 2 (q )  2 R ( t ,  q)[1 - R ( t ,  q)] dq4 

x ~q/[/z~(t, ~) + e V ( t ,  ~)] 

= -div(j~(t, ~)) (4.47) 

3. For all de  W, l,~ {0, I,...}, ie  {1,..., 5}, with 14+15~>4, we have 

3 
lim fE~ fEcfW ,~l (ut--qi)l'o~-3el(U4--8-c)14 y~O , .= 

2 tu4-_ecl) xfl 3exp ( -  ~ 

(2 ) 
X ( e v - -  q4) '5 fl--3 exp - ~ ] ~ -  q41 d~t du 4 dq4 

(re 
) ~  for l I = l 2 = l 3 = 0 

otherwise 

and l 4 = l 5 = 2 
(4.48) 

Further, from (4.20) and (3.8) and (3.9), 

( 2 )  
q ~ - s f l - 1  exp - ~ A E  ='~y 25/2y l e x p [ ( 5 _ 2 )  y - l ]  

=~y 15/2exp(3y-1 ) y - 6  

= ~)S 3 A E  6 ~ - 3 f l - 6  (4.49) 

According to our assumptions in Section 3.1, 2 and ((~/63q4) 2 vanish at the 
band edges and with qv = (ql, q2, q3, e~) and qc = (ql, q2, q3, _ec) we have 
the expansions 

1 8 2 
2(q) = ~ ~-s 2(q~)(g~ - q~)2 + ... (4.50) 

oq~ 

and 

1 c3 z 
2(U) = 5 ~  )~ e-c)2 + "'" (4.51) 
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Therefore, for all t s (0, to] and 0 E W, from (4.42) by similar arguments as 
used above with (4.48)-(4.51), (4.27), (4.15), and (2.12), we get 

y~olim Py(t'q)=lim'TS3 AE6 fEofE c w 

• [-(1 -- Hq) H,,d~,og.,. - Hq(1 - H.) do, c, gq,.] 
1 0 2 1 0 2 

x 5 Oq---~ 2(q~)(u4 - -ec)2 5 ~ 2(q~)(g~ - qv) 2 

2 lu4_ eel ) x e -3e l f l -3  exp ( -- 

x fl 3 exp - ~ ] e v -  q4[ dft du 4 d q 4  

82 02 
= ~S3AE6160q---~42(qr 

x {[1 -R( t ,  q~)] R(t, q~) gq~,q~ 

--R(I, q v ) [ 1 - R ( t ,  qc)] gq~,q~} 

= r( t ,  q)  (4.52) 

Combining (4.47) and (4.52) then gives the continuity equation (4.32) and 
Eq. (4.33) follows in an analogous manner. 

4. Since the initial conditions (4.36) and (4.37) are obvious, it 
remains to show the reflecting boundary conditions (4.34) and (4.35). 

For simplicity, let us choose a point b = (Pl, P2, P3) e 0W, which is a 
maximal point of 0 W in the direction of the first spatial coordinate. From 
the smoothness of the boundary 0W we can conclude that the outward 
unit normal v 0 of 0 W at/3 is parallel to the direction of the first spatial 
coordinate. 

It can be shown for lie {0, 1,...}, i t  {1 ..... 4}, with l I +/2- 'b 13/> 1 that 

lira fE fOI~l(ui--pi)"l(u4--q4)14c~-4fl lele2dudq4 
y ~ O  ~ i= 

3 
rc for l~ = 1, 

0 otherwise 

12=13=14=0 
(4.53) 
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N o w  it f o l l o w s  f r o m  ( 4 . 5 )  a n d  

0 = l i m  
y - * 0  

= l ira 
y ~ 0  

= l i m  
y ~ 0  

= l ira 
y ~ 0  

1351 

(3.15) as in (4.40)-(4.52) for all t~(O,/0]  

~ p.(t,/3) 

0 
~z fE~ ~t Hq.~(q) dq4 

~{ Gy(t, q)+ Py(t, q)} 

~Gy(t, q) + 0 (4.54) 

With the notation p = (Pl, P2, P3, q4) and ~ = (pl, P2, P3, U4) we get from 
(4.54) with (4.53) [similar to (4.35)-(4.37)] 

O--q y-~olim =-eft- ~ leo f~• {~ql Hp(Ul--Pl) 

H e + Hp(l - p) -~-~ql V(t,/9)(u 1 - Pl) ;~(P) "~(fi) el e2 du dq4 

= ,  ~ ~ R(t. p) + R(t. p)[1 - R(t. p ) ]  k-T 
v 

x -  V(t, p) 2(p) 2 dq4 
~qt 

3 r 1 0 
=q-~rc JE~ R(t' p ) [ 1 -  R(t' P)] kT Sql 

x [#~(t, fi)+eV(t,/3)] )fl(p) dq4 

3 
= -~j~(t, fi).v b (4.55) 

From (4.16) it follows that e~ is translation and rotation invariant in R 3. 
Therefore, we can conclude for all ~s~?W and t e  (0, to] that 

jr(t, #) -v 0 = 0 (4.56) 

Analogously, we can also show that 

jc(t, gl)" vo = 0 (4.57) 

for all t e (0, to] and c~ e ~3 W. 
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Since the assertions (4.56) and (4.57) are already assumed to be valid 
for the starting point t = 0 in our initial condition, Proposition 4.2 is now 
proved. | 

We note from the above proofs that we have different time scales of 
the dynamics in the energy direction, at the boundary, and in the spatial 
direction. 

We remark that our approach works also for other shapes of the den- 
sity of states at the band edges. For  instance, if we assume that 2 is zero 
and I(~/~q4)2[  is strictly positive at the band edges, then we obtain, with 

= Sy 3/2 e x p ( - y  1) 

7 = flY 17/2 exp(5y l) 

and 

Cr(gl) = ~ 4 g S  3 A E  4 ~ )~(q~) ~- -  2(q~) 
oq4 oq4 

analogous formulas to those above. 
Further, we can also allow small gaps within the bands as long as they 

are smaller than AE. 
Under such assumptions, similar results to those above can be estab- 

lished. This means the donator  and acceptor energy levels can be modeled 
within the corresponding bands as long as the gap with size A E  remains 
the maximum gap. 

There is no major difficulty in applying our approach to a dynamics 
with drain and source or to modeling the behaviour at contacts, even for 
semiconductors with strong electrical fields or very low temperatures. 
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